This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the ring of integers mod n . This is literally the quotient ring of ZZ by the ideal n ZZ , but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-zn | ⊢ ℤ/nℤ = ( 𝑛 ∈ ℕ0 ↦ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | czn | ⊢ ℤ/nℤ | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cn0 | ⊢ ℕ0 | |
| 3 | czring | ⊢ ℤring | |
| 4 | vz | ⊢ 𝑧 | |
| 5 | 4 | cv | ⊢ 𝑧 |
| 6 | cqus | ⊢ /s | |
| 7 | cqg | ⊢ ~QG | |
| 8 | crsp | ⊢ RSpan | |
| 9 | 5 8 | cfv | ⊢ ( RSpan ‘ 𝑧 ) |
| 10 | 1 | cv | ⊢ 𝑛 |
| 11 | 10 | csn | ⊢ { 𝑛 } |
| 12 | 11 9 | cfv | ⊢ ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) |
| 13 | 5 12 7 | co | ⊢ ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) |
| 14 | 5 13 6 | co | ⊢ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) |
| 15 | vs | ⊢ 𝑠 | |
| 16 | 15 | cv | ⊢ 𝑠 |
| 17 | csts | ⊢ sSet | |
| 18 | cple | ⊢ le | |
| 19 | cnx | ⊢ ndx | |
| 20 | 19 18 | cfv | ⊢ ( le ‘ ndx ) |
| 21 | czrh | ⊢ ℤRHom | |
| 22 | 16 21 | cfv | ⊢ ( ℤRHom ‘ 𝑠 ) |
| 23 | cc0 | ⊢ 0 | |
| 24 | 10 23 | wceq | ⊢ 𝑛 = 0 |
| 25 | cz | ⊢ ℤ | |
| 26 | cfzo | ⊢ ..^ | |
| 27 | 23 10 26 | co | ⊢ ( 0 ..^ 𝑛 ) |
| 28 | 24 25 27 | cif | ⊢ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) |
| 29 | 22 28 | cres | ⊢ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) |
| 30 | vf | ⊢ 𝑓 | |
| 31 | 30 | cv | ⊢ 𝑓 |
| 32 | cle | ⊢ ≤ | |
| 33 | 31 32 | ccom | ⊢ ( 𝑓 ∘ ≤ ) |
| 34 | 31 | ccnv | ⊢ ◡ 𝑓 |
| 35 | 33 34 | ccom | ⊢ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) |
| 36 | 30 29 35 | csb | ⊢ ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) |
| 37 | 20 36 | cop | ⊢ 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 |
| 38 | 16 37 17 | co | ⊢ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
| 39 | 15 14 38 | csb | ⊢ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
| 40 | 4 3 39 | csb | ⊢ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
| 41 | 1 2 40 | cmpt | ⊢ ( 𝑛 ∈ ℕ0 ↦ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) ) |
| 42 | 0 41 | wceq | ⊢ ℤ/nℤ = ( 𝑛 ∈ ℕ0 ↦ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) ) |