This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Augment an abelian group with vector space operations to turn it into a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-zlm | |- ZMod = ( g e. _V |-> ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | czlm | |- ZMod |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | 1 | cv | |- g |
| 4 | csts | |- sSet |
|
| 5 | csca | |- Scalar |
|
| 6 | cnx | |- ndx |
|
| 7 | 6 5 | cfv | |- ( Scalar ` ndx ) |
| 8 | czring | |- ZZring |
|
| 9 | 7 8 | cop | |- <. ( Scalar ` ndx ) , ZZring >. |
| 10 | 3 9 4 | co | |- ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) |
| 11 | cvsca | |- .s |
|
| 12 | 6 11 | cfv | |- ( .s ` ndx ) |
| 13 | cmg | |- .g |
|
| 14 | 3 13 | cfv | |- ( .g ` g ) |
| 15 | 12 14 | cop | |- <. ( .s ` ndx ) , ( .g ` g ) >. |
| 16 | 10 15 4 | co | |- ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) |
| 17 | 1 2 16 | cmpt | |- ( g e. _V |-> ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) ) |
| 18 | 0 17 | wceq | |- ZMod = ( g e. _V |-> ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) ) |