This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the collection of walks of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 11-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wwlksnon | ⊢ WWalksNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwwlksnon | ⊢ WWalksNOn | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cn0 | ⊢ ℕ0 | |
| 3 | vg | ⊢ 𝑔 | |
| 4 | cvv | ⊢ V | |
| 5 | va | ⊢ 𝑎 | |
| 6 | cvtx | ⊢ Vtx | |
| 7 | 3 | cv | ⊢ 𝑔 |
| 8 | 7 6 | cfv | ⊢ ( Vtx ‘ 𝑔 ) |
| 9 | vb | ⊢ 𝑏 | |
| 10 | vw | ⊢ 𝑤 | |
| 11 | 1 | cv | ⊢ 𝑛 |
| 12 | cwwlksn | ⊢ WWalksN | |
| 13 | 11 7 12 | co | ⊢ ( 𝑛 WWalksN 𝑔 ) |
| 14 | 10 | cv | ⊢ 𝑤 |
| 15 | cc0 | ⊢ 0 | |
| 16 | 15 14 | cfv | ⊢ ( 𝑤 ‘ 0 ) |
| 17 | 5 | cv | ⊢ 𝑎 |
| 18 | 16 17 | wceq | ⊢ ( 𝑤 ‘ 0 ) = 𝑎 |
| 19 | 11 14 | cfv | ⊢ ( 𝑤 ‘ 𝑛 ) |
| 20 | 9 | cv | ⊢ 𝑏 |
| 21 | 19 20 | wceq | ⊢ ( 𝑤 ‘ 𝑛 ) = 𝑏 |
| 22 | 18 21 | wa | ⊢ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) |
| 23 | 22 10 13 | crab | ⊢ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } |
| 24 | 5 9 8 8 23 | cmpo | ⊢ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } ) |
| 25 | 1 3 2 4 24 | cmpo | ⊢ ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } ) ) |
| 26 | 0 25 | wceq | ⊢ WWalksNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } ) ) |