This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the collection of simple paths of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wspthsnon | ⊢ WSPathsNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwwspthsnon | ⊢ WSPathsNOn | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cn0 | ⊢ ℕ0 | |
| 3 | vg | ⊢ 𝑔 | |
| 4 | cvv | ⊢ V | |
| 5 | va | ⊢ 𝑎 | |
| 6 | cvtx | ⊢ Vtx | |
| 7 | 3 | cv | ⊢ 𝑔 |
| 8 | 7 6 | cfv | ⊢ ( Vtx ‘ 𝑔 ) |
| 9 | vb | ⊢ 𝑏 | |
| 10 | vw | ⊢ 𝑤 | |
| 11 | 5 | cv | ⊢ 𝑎 |
| 12 | 1 | cv | ⊢ 𝑛 |
| 13 | cwwlksnon | ⊢ WWalksNOn | |
| 14 | 12 7 13 | co | ⊢ ( 𝑛 WWalksNOn 𝑔 ) |
| 15 | 9 | cv | ⊢ 𝑏 |
| 16 | 11 15 14 | co | ⊢ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) |
| 17 | vf | ⊢ 𝑓 | |
| 18 | 17 | cv | ⊢ 𝑓 |
| 19 | cspthson | ⊢ SPathsOn | |
| 20 | 7 19 | cfv | ⊢ ( SPathsOn ‘ 𝑔 ) |
| 21 | 11 15 20 | co | ⊢ ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) |
| 22 | 10 | cv | ⊢ 𝑤 |
| 23 | 18 22 21 | wbr | ⊢ 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 |
| 24 | 23 17 | wex | ⊢ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 |
| 25 | 24 10 16 | crab | ⊢ { 𝑤 ∈ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } |
| 26 | 5 9 8 8 25 | cmpo | ⊢ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) |
| 27 | 1 3 2 4 26 | cmpo | ⊢ ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) |
| 28 | 0 27 | wceq | ⊢ WSPathsNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) |