This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-trans | ⊢ Trans = ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctrans | ⊢ Trans | |
| 1 | cvv | ⊢ V | |
| 2 | cep | ⊢ E | |
| 3 | 2 2 | ccom | ⊢ ( E ∘ E ) |
| 4 | 3 2 | cdif | ⊢ ( ( E ∘ E ) ∖ E ) |
| 5 | 4 | crn | ⊢ ran ( ( E ∘ E ) ∖ E ) |
| 6 | 1 5 | cdif | ⊢ ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) |
| 7 | 0 6 | wceq | ⊢ Trans = ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) |