This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary trigonometry
The exponential, sine, and cosine functions
df-tan
Metamath Proof Explorer
Description: Define the tangent function. We define it this way for cmpt , which
requires the form ( x e. A |-> B ) . (Contributed by Mario
Carneiro , 14-Mar-2014)
Ref
Expression
Assertion
df-tan
⊢ tan = x ∈ cos -1 ℂ ∖ 0 ⟼ sin ⁡ x cos ⁡ x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ctan
class tan
1
vx
setvar x
2
ccos
class cos
3
2
ccnv
class cos -1
4
cc
class ℂ
5
cc0
class 0
6
5
csn
class 0
7
4 6
cdif
class ℂ ∖ 0
8
3 7
cima
class cos -1 ℂ ∖ 0
9
csin
class sin
10
1
cv
setvar x
11
10 9
cfv
class sin ⁡ x
12
cdiv
class ÷
13
10 2
cfv
class cos ⁡ x
14
11 13 12
co
class sin ⁡ x cos ⁡ x
15
1 8 14
cmpt
class x ∈ cos -1 ℂ ∖ 0 ⟼ sin ⁡ x cos ⁡ x
16
0 15
wceq
wff tan = x ∈ cos -1 ℂ ∖ 0 ⟼ sin ⁡ x cos ⁡ x