This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Magma homomorphisms and submagmas
df-submgm
Metamath Proof Explorer
Description: A submagma is a subset of a magma which is closed under the operation.
Such subsets are themselves magmas. (Contributed by AV , 24-Feb-2020)
Ref
Expression
Assertion
df-submgm
⊢ SubMgm = s ∈ Mgm ⟼ t ∈ 𝒫 Base s | ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
csubmgm
class SubMgm
1
vs
setvar s
2
cmgm
class Mgm
3
vt
setvar t
4
cbs
class Base
5
1
cv
setvar s
6
5 4
cfv
class Base s
7
6
cpw
class 𝒫 Base s
8
vx
setvar x
9
3
cv
setvar t
10
vy
setvar y
11
8
cv
setvar x
12
cplusg
class + 𝑔
13
5 12
cfv
class + s
14
10
cv
setvar y
15
11 14 13
co
class x + s y
16
15 9
wcel
wff x + s y ∈ t
17
16 10 9
wral
wff ∀ y ∈ t x + s y ∈ t
18
17 8 9
wral
wff ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
19
18 3 7
crab
class t ∈ 𝒫 Base s | ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
20
1 2 19
cmpt
class s ∈ Mgm ⟼ t ∈ 𝒫 Base s | ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
21
0 20
wceq
wff SubMgm = s ∈ Mgm ⟼ t ∈ 𝒫 Base s | ∀ x ∈ t ∀ y ∈ t x + s y ∈ t