This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all unital rings. (Contributed by Jeff Hankins, 21-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rngo | |- RingOps = { <. g , h >. | ( ( g e. AbelOp /\ h : ( ran g X. ran g ) --> ran g ) /\ ( A. x e. ran g A. y e. ran g A. z e. ran g ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) /\ E. x e. ran g A. y e. ran g ( ( x h y ) = y /\ ( y h x ) = y ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crngo | |- RingOps |
|
| 1 | vg | |- g |
|
| 2 | vh | |- h |
|
| 3 | 1 | cv | |- g |
| 4 | cablo | |- AbelOp |
|
| 5 | 3 4 | wcel | |- g e. AbelOp |
| 6 | 2 | cv | |- h |
| 7 | 3 | crn | |- ran g |
| 8 | 7 7 | cxp | |- ( ran g X. ran g ) |
| 9 | 8 7 6 | wf | |- h : ( ran g X. ran g ) --> ran g |
| 10 | 5 9 | wa | |- ( g e. AbelOp /\ h : ( ran g X. ran g ) --> ran g ) |
| 11 | vx | |- x |
|
| 12 | vy | |- y |
|
| 13 | vz | |- z |
|
| 14 | 11 | cv | |- x |
| 15 | 12 | cv | |- y |
| 16 | 14 15 6 | co | |- ( x h y ) |
| 17 | 13 | cv | |- z |
| 18 | 16 17 6 | co | |- ( ( x h y ) h z ) |
| 19 | 15 17 6 | co | |- ( y h z ) |
| 20 | 14 19 6 | co | |- ( x h ( y h z ) ) |
| 21 | 18 20 | wceq | |- ( ( x h y ) h z ) = ( x h ( y h z ) ) |
| 22 | 15 17 3 | co | |- ( y g z ) |
| 23 | 14 22 6 | co | |- ( x h ( y g z ) ) |
| 24 | 14 17 6 | co | |- ( x h z ) |
| 25 | 16 24 3 | co | |- ( ( x h y ) g ( x h z ) ) |
| 26 | 23 25 | wceq | |- ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) |
| 27 | 14 15 3 | co | |- ( x g y ) |
| 28 | 27 17 6 | co | |- ( ( x g y ) h z ) |
| 29 | 24 19 3 | co | |- ( ( x h z ) g ( y h z ) ) |
| 30 | 28 29 | wceq | |- ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) |
| 31 | 21 26 30 | w3a | |- ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) |
| 32 | 31 13 7 | wral | |- A. z e. ran g ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) |
| 33 | 32 12 7 | wral | |- A. y e. ran g A. z e. ran g ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) |
| 34 | 33 11 7 | wral | |- A. x e. ran g A. y e. ran g A. z e. ran g ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) |
| 35 | 16 15 | wceq | |- ( x h y ) = y |
| 36 | 15 14 6 | co | |- ( y h x ) |
| 37 | 36 15 | wceq | |- ( y h x ) = y |
| 38 | 35 37 | wa | |- ( ( x h y ) = y /\ ( y h x ) = y ) |
| 39 | 38 12 7 | wral | |- A. y e. ran g ( ( x h y ) = y /\ ( y h x ) = y ) |
| 40 | 39 11 7 | wrex | |- E. x e. ran g A. y e. ran g ( ( x h y ) = y /\ ( y h x ) = y ) |
| 41 | 34 40 | wa | |- ( A. x e. ran g A. y e. ran g A. z e. ran g ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) /\ E. x e. ran g A. y e. ran g ( ( x h y ) = y /\ ( y h x ) = y ) ) |
| 42 | 10 41 | wa | |- ( ( g e. AbelOp /\ h : ( ran g X. ran g ) --> ran g ) /\ ( A. x e. ran g A. y e. ran g A. z e. ran g ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) /\ E. x e. ran g A. y e. ran g ( ( x h y ) = y /\ ( y h x ) = y ) ) ) |
| 43 | 42 1 2 | copab | |- { <. g , h >. | ( ( g e. AbelOp /\ h : ( ran g X. ran g ) --> ran g ) /\ ( A. x e. ran g A. y e. ran g A. z e. ran g ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) /\ E. x e. ran g A. y e. ran g ( ( x h y ) = y /\ ( y h x ) = y ) ) ) } |
| 44 | 0 43 | wceq | |- RingOps = { <. g , h >. | ( ( g e. AbelOp /\ h : ( ran g X. ran g ) --> ran g ) /\ ( A. x e. ran g A. y e. ran g A. z e. ran g ( ( ( x h y ) h z ) = ( x h ( y h z ) ) /\ ( x h ( y g z ) ) = ( ( x h y ) g ( x h z ) ) /\ ( ( x g y ) h z ) = ( ( x h z ) g ( y h z ) ) ) /\ E. x e. ran g A. y e. ran g ( ( x h y ) = y /\ ( y h x ) = y ) ) ) } |