This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of non-unital ring homomorphisms from r to s . (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rnghm | |- RngHom = ( r e. Rng , s e. Rng |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crnghm | |- RngHom |
|
| 1 | vr | |- r |
|
| 2 | crng | |- Rng |
|
| 3 | vs | |- s |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- r |
| 6 | 5 4 | cfv | |- ( Base ` r ) |
| 7 | vv | |- v |
|
| 8 | 3 | cv | |- s |
| 9 | 8 4 | cfv | |- ( Base ` s ) |
| 10 | vw | |- w |
|
| 11 | vf | |- f |
|
| 12 | 10 | cv | |- w |
| 13 | cmap | |- ^m |
|
| 14 | 7 | cv | |- v |
| 15 | 12 14 13 | co | |- ( w ^m v ) |
| 16 | vx | |- x |
|
| 17 | vy | |- y |
|
| 18 | 11 | cv | |- f |
| 19 | 16 | cv | |- x |
| 20 | cplusg | |- +g |
|
| 21 | 5 20 | cfv | |- ( +g ` r ) |
| 22 | 17 | cv | |- y |
| 23 | 19 22 21 | co | |- ( x ( +g ` r ) y ) |
| 24 | 23 18 | cfv | |- ( f ` ( x ( +g ` r ) y ) ) |
| 25 | 19 18 | cfv | |- ( f ` x ) |
| 26 | 8 20 | cfv | |- ( +g ` s ) |
| 27 | 22 18 | cfv | |- ( f ` y ) |
| 28 | 25 27 26 | co | |- ( ( f ` x ) ( +g ` s ) ( f ` y ) ) |
| 29 | 24 28 | wceq | |- ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) |
| 30 | cmulr | |- .r |
|
| 31 | 5 30 | cfv | |- ( .r ` r ) |
| 32 | 19 22 31 | co | |- ( x ( .r ` r ) y ) |
| 33 | 32 18 | cfv | |- ( f ` ( x ( .r ` r ) y ) ) |
| 34 | 8 30 | cfv | |- ( .r ` s ) |
| 35 | 25 27 34 | co | |- ( ( f ` x ) ( .r ` s ) ( f ` y ) ) |
| 36 | 33 35 | wceq | |- ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) |
| 37 | 29 36 | wa | |- ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
| 38 | 37 17 14 | wral | |- A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
| 39 | 38 16 14 | wral | |- A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
| 40 | 39 11 15 | crab | |- { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } |
| 41 | 10 9 40 | csb | |- [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } |
| 42 | 7 6 41 | csb | |- [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } |
| 43 | 1 3 2 2 42 | cmpo | |- ( r e. Rng , s e. Rng |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } ) |
| 44 | 0 43 | wceq | |- RngHom = ( r e. Rng , s e. Rng |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } ) |