This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of ring homomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rhm | |- RingHom = ( r e. Ring , s e. Ring |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crh | |- RingHom |
|
| 1 | vr | |- r |
|
| 2 | crg | |- Ring |
|
| 3 | vs | |- s |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- r |
| 6 | 5 4 | cfv | |- ( Base ` r ) |
| 7 | vv | |- v |
|
| 8 | 3 | cv | |- s |
| 9 | 8 4 | cfv | |- ( Base ` s ) |
| 10 | vw | |- w |
|
| 11 | vf | |- f |
|
| 12 | 10 | cv | |- w |
| 13 | cmap | |- ^m |
|
| 14 | 7 | cv | |- v |
| 15 | 12 14 13 | co | |- ( w ^m v ) |
| 16 | 11 | cv | |- f |
| 17 | cur | |- 1r |
|
| 18 | 5 17 | cfv | |- ( 1r ` r ) |
| 19 | 18 16 | cfv | |- ( f ` ( 1r ` r ) ) |
| 20 | 8 17 | cfv | |- ( 1r ` s ) |
| 21 | 19 20 | wceq | |- ( f ` ( 1r ` r ) ) = ( 1r ` s ) |
| 22 | vx | |- x |
|
| 23 | vy | |- y |
|
| 24 | 22 | cv | |- x |
| 25 | cplusg | |- +g |
|
| 26 | 5 25 | cfv | |- ( +g ` r ) |
| 27 | 23 | cv | |- y |
| 28 | 24 27 26 | co | |- ( x ( +g ` r ) y ) |
| 29 | 28 16 | cfv | |- ( f ` ( x ( +g ` r ) y ) ) |
| 30 | 24 16 | cfv | |- ( f ` x ) |
| 31 | 8 25 | cfv | |- ( +g ` s ) |
| 32 | 27 16 | cfv | |- ( f ` y ) |
| 33 | 30 32 31 | co | |- ( ( f ` x ) ( +g ` s ) ( f ` y ) ) |
| 34 | 29 33 | wceq | |- ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) |
| 35 | cmulr | |- .r |
|
| 36 | 5 35 | cfv | |- ( .r ` r ) |
| 37 | 24 27 36 | co | |- ( x ( .r ` r ) y ) |
| 38 | 37 16 | cfv | |- ( f ` ( x ( .r ` r ) y ) ) |
| 39 | 8 35 | cfv | |- ( .r ` s ) |
| 40 | 30 32 39 | co | |- ( ( f ` x ) ( .r ` s ) ( f ` y ) ) |
| 41 | 38 40 | wceq | |- ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) |
| 42 | 34 41 | wa | |- ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
| 43 | 42 23 14 | wral | |- A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
| 44 | 43 22 14 | wral | |- A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
| 45 | 21 44 | wa | |- ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) |
| 46 | 45 11 15 | crab | |- { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } |
| 47 | 10 9 46 | csb | |- [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } |
| 48 | 7 6 47 | csb | |- [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } |
| 49 | 1 3 2 2 48 | cmpo | |- ( r e. Ring , s e. Ring |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } ) |
| 50 | 0 49 | wceq | |- RingHom = ( r e. Ring , s e. Ring |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | ( ( f ` ( 1r ` r ) ) = ( 1r ` s ) /\ A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) ) } ) |