This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-resv | |- |`v = ( w e. _V , x e. _V |-> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cresv | |- |`v |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | csca | |- Scalar |
|
| 6 | 1 | cv | |- w |
| 7 | 6 5 | cfv | |- ( Scalar ` w ) |
| 8 | 7 4 | cfv | |- ( Base ` ( Scalar ` w ) ) |
| 9 | 3 | cv | |- x |
| 10 | 8 9 | wss | |- ( Base ` ( Scalar ` w ) ) C_ x |
| 11 | csts | |- sSet |
|
| 12 | cnx | |- ndx |
|
| 13 | 12 5 | cfv | |- ( Scalar ` ndx ) |
| 14 | cress | |- |`s |
|
| 15 | 7 9 14 | co | |- ( ( Scalar ` w ) |`s x ) |
| 16 | 13 15 | cop | |- <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. |
| 17 | 6 16 11 | co | |- ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) |
| 18 | 10 6 17 | cif | |- if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) |
| 19 | 1 3 2 2 18 | cmpo | |- ( w e. _V , x e. _V |-> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) ) |
| 20 | 0 19 | wceq | |- |`v = ( w e. _V , x e. _V |-> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) ) |