This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Define the quotient topology given a function f and topology j
on the domain of f . (Contributed by Mario Carneiro, 23-Mar-2015)
|
|
Ref |
Expression |
|
Assertion |
df-qtop |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cqtop |
|
| 1 |
|
vj |
|
| 2 |
|
cvv |
|
| 3 |
|
vf |
|
| 4 |
|
vs |
|
| 5 |
3
|
cv |
|
| 6 |
1
|
cv |
|
| 7 |
6
|
cuni |
|
| 8 |
5 7
|
cima |
|
| 9 |
8
|
cpw |
|
| 10 |
5
|
ccnv |
|
| 11 |
4
|
cv |
|
| 12 |
10 11
|
cima |
|
| 13 |
12 7
|
cin |
|
| 14 |
13 6
|
wcel |
|
| 15 |
14 4 9
|
crab |
|
| 16 |
1 3 2 2 15
|
cmpo |
|
| 17 |
0 16
|
wceq |
|