This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the prime π function, which counts the number of primes less than or equal to x , see definition in ApostolNT p. 8. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ppi | ⊢ π = ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cppi | ⊢ π | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cr | ⊢ ℝ | |
| 3 | chash | ⊢ ♯ | |
| 4 | cc0 | ⊢ 0 | |
| 5 | cicc | ⊢ [,] | |
| 6 | 1 | cv | ⊢ 𝑥 |
| 7 | 4 6 5 | co | ⊢ ( 0 [,] 𝑥 ) |
| 8 | cprime | ⊢ ℙ | |
| 9 | 7 8 | cin | ⊢ ( ( 0 [,] 𝑥 ) ∩ ℙ ) |
| 10 | 9 3 | cfv | ⊢ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) |
| 11 | 1 2 10 | cmpt | ⊢ ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) ) |
| 12 | 0 11 | wceq | ⊢ π = ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) ) |