This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the order topology, given an order <_ , written as r below. A closed subbasis for the order topology is given by the closed rays [ y , +oo ) = { z e. X | y <_ z } and ( -oo , y ] = { z e. X | z <_ y } , along with ( -oo , +oo ) = X itself. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ordt | |- ordTop = ( r e. _V |-> ( topGen ` ( fi ` ( { dom r } u. ran ( ( x e. dom r |-> { y e. dom r | -. y r x } ) u. ( x e. dom r |-> { y e. dom r | -. x r y } ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cordt | |- ordTop |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | ctg | |- topGen |
|
| 4 | cfi | |- fi |
|
| 5 | 1 | cv | |- r |
| 6 | 5 | cdm | |- dom r |
| 7 | 6 | csn | |- { dom r } |
| 8 | vx | |- x |
|
| 9 | vy | |- y |
|
| 10 | 9 | cv | |- y |
| 11 | 8 | cv | |- x |
| 12 | 10 11 5 | wbr | |- y r x |
| 13 | 12 | wn | |- -. y r x |
| 14 | 13 9 6 | crab | |- { y e. dom r | -. y r x } |
| 15 | 8 6 14 | cmpt | |- ( x e. dom r |-> { y e. dom r | -. y r x } ) |
| 16 | 11 10 5 | wbr | |- x r y |
| 17 | 16 | wn | |- -. x r y |
| 18 | 17 9 6 | crab | |- { y e. dom r | -. x r y } |
| 19 | 8 6 18 | cmpt | |- ( x e. dom r |-> { y e. dom r | -. x r y } ) |
| 20 | 15 19 | cun | |- ( ( x e. dom r |-> { y e. dom r | -. y r x } ) u. ( x e. dom r |-> { y e. dom r | -. x r y } ) ) |
| 21 | 20 | crn | |- ran ( ( x e. dom r |-> { y e. dom r | -. y r x } ) u. ( x e. dom r |-> { y e. dom r | -. x r y } ) ) |
| 22 | 7 21 | cun | |- ( { dom r } u. ran ( ( x e. dom r |-> { y e. dom r | -. y r x } ) u. ( x e. dom r |-> { y e. dom r | -. x r y } ) ) ) |
| 23 | 22 4 | cfv | |- ( fi ` ( { dom r } u. ran ( ( x e. dom r |-> { y e. dom r | -. y r x } ) u. ( x e. dom r |-> { y e. dom r | -. x r y } ) ) ) ) |
| 24 | 23 3 | cfv | |- ( topGen ` ( fi ` ( { dom r } u. ran ( ( x e. dom r |-> { y e. dom r | -. y r x } ) u. ( x e. dom r |-> { y e. dom r | -. x r y } ) ) ) ) ) |
| 25 | 1 2 24 | cmpt | |- ( r e. _V |-> ( topGen ` ( fi ` ( { dom r } u. ran ( ( x e. dom r |-> { y e. dom r | -. y r x } ) u. ( x e. dom r |-> { y e. dom r | -. x r y } ) ) ) ) ) ) |
| 26 | 0 25 | wceq | |- ordTop = ( r e. _V |-> ( topGen ` ( fi ` ( { dom r } u. ran ( ( x e. dom r |-> { y e. dom r | -. y r x } ) u. ( x e. dom r |-> { y e. dom r | -. x r y } ) ) ) ) ) ) |