This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to ( oppGM ) . (Contributed by Thierry Arnoux, 13-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-omnd | ⊢ oMnd = { 𝑔 ∈ Mnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | comnd | ⊢ oMnd | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cmnd | ⊢ Mnd | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 6 | vv | ⊢ 𝑣 | |
| 7 | cplusg | ⊢ +g | |
| 8 | 4 7 | cfv | ⊢ ( +g ‘ 𝑔 ) |
| 9 | vp | ⊢ 𝑝 | |
| 10 | cple | ⊢ le | |
| 11 | 4 10 | cfv | ⊢ ( le ‘ 𝑔 ) |
| 12 | vl | ⊢ 𝑙 | |
| 13 | ctos | ⊢ Toset | |
| 14 | 4 13 | wcel | ⊢ 𝑔 ∈ Toset |
| 15 | va | ⊢ 𝑎 | |
| 16 | 6 | cv | ⊢ 𝑣 |
| 17 | vb | ⊢ 𝑏 | |
| 18 | vc | ⊢ 𝑐 | |
| 19 | 15 | cv | ⊢ 𝑎 |
| 20 | 12 | cv | ⊢ 𝑙 |
| 21 | 17 | cv | ⊢ 𝑏 |
| 22 | 19 21 20 | wbr | ⊢ 𝑎 𝑙 𝑏 |
| 23 | 9 | cv | ⊢ 𝑝 |
| 24 | 18 | cv | ⊢ 𝑐 |
| 25 | 19 24 23 | co | ⊢ ( 𝑎 𝑝 𝑐 ) |
| 26 | 21 24 23 | co | ⊢ ( 𝑏 𝑝 𝑐 ) |
| 27 | 25 26 20 | wbr | ⊢ ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) |
| 28 | 22 27 | wi | ⊢ ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) |
| 29 | 28 18 16 | wral | ⊢ ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) |
| 30 | 29 17 16 | wral | ⊢ ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) |
| 31 | 30 15 16 | wral | ⊢ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) |
| 32 | 14 31 | wa | ⊢ ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) |
| 33 | 32 12 11 | wsbc | ⊢ [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) |
| 34 | 33 9 8 | wsbc | ⊢ [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) |
| 35 | 34 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) |
| 36 | 35 1 2 | crab | ⊢ { 𝑔 ∈ Mnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) } |
| 37 | 0 36 | wceq | ⊢ oMnd = { 𝑔 ∈ Mnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) } |