This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to ( oppGM ) . (Contributed by Thierry Arnoux, 13-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-omnd | |- oMnd = { g e. Mnd | [. ( Base ` g ) / v ]. [. ( +g ` g ) / p ]. [. ( le ` g ) / l ]. ( g e. Toset /\ A. a e. v A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | comnd | |- oMnd |
|
| 1 | vg | |- g |
|
| 2 | cmnd | |- Mnd |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- g |
| 5 | 4 3 | cfv | |- ( Base ` g ) |
| 6 | vv | |- v |
|
| 7 | cplusg | |- +g |
|
| 8 | 4 7 | cfv | |- ( +g ` g ) |
| 9 | vp | |- p |
|
| 10 | cple | |- le |
|
| 11 | 4 10 | cfv | |- ( le ` g ) |
| 12 | vl | |- l |
|
| 13 | ctos | |- Toset |
|
| 14 | 4 13 | wcel | |- g e. Toset |
| 15 | va | |- a |
|
| 16 | 6 | cv | |- v |
| 17 | vb | |- b |
|
| 18 | vc | |- c |
|
| 19 | 15 | cv | |- a |
| 20 | 12 | cv | |- l |
| 21 | 17 | cv | |- b |
| 22 | 19 21 20 | wbr | |- a l b |
| 23 | 9 | cv | |- p |
| 24 | 18 | cv | |- c |
| 25 | 19 24 23 | co | |- ( a p c ) |
| 26 | 21 24 23 | co | |- ( b p c ) |
| 27 | 25 26 20 | wbr | |- ( a p c ) l ( b p c ) |
| 28 | 22 27 | wi | |- ( a l b -> ( a p c ) l ( b p c ) ) |
| 29 | 28 18 16 | wral | |- A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) |
| 30 | 29 17 16 | wral | |- A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) |
| 31 | 30 15 16 | wral | |- A. a e. v A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) |
| 32 | 14 31 | wa | |- ( g e. Toset /\ A. a e. v A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) ) |
| 33 | 32 12 11 | wsbc | |- [. ( le ` g ) / l ]. ( g e. Toset /\ A. a e. v A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) ) |
| 34 | 33 9 8 | wsbc | |- [. ( +g ` g ) / p ]. [. ( le ` g ) / l ]. ( g e. Toset /\ A. a e. v A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) ) |
| 35 | 34 6 5 | wsbc | |- [. ( Base ` g ) / v ]. [. ( +g ` g ) / p ]. [. ( le ` g ) / l ]. ( g e. Toset /\ A. a e. v A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) ) |
| 36 | 35 1 2 | crab | |- { g e. Mnd | [. ( Base ` g ) / v ]. [. ( +g ` g ) / p ]. [. ( le ` g ) / l ]. ( g e. Toset /\ A. a e. v A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) ) } |
| 37 | 0 36 | wceq | |- oMnd = { g e. Mnd | [. ( Base ` g ) / v ]. [. ( +g ` g ) / p ]. [. ( le ` g ) / l ]. ( g e. Toset /\ A. a e. v A. b e. v A. c e. v ( a l b -> ( a p c ) l ( b p c ) ) ) } |