This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lvec | ⊢ LVec = { 𝑓 ∈ LMod ∣ ( Scalar ‘ 𝑓 ) ∈ DivRing } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clvec | ⊢ LVec | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | clmod | ⊢ LMod | |
| 3 | csca | ⊢ Scalar | |
| 4 | 1 | cv | ⊢ 𝑓 |
| 5 | 4 3 | cfv | ⊢ ( Scalar ‘ 𝑓 ) |
| 6 | cdr | ⊢ DivRing | |
| 7 | 5 6 | wcel | ⊢ ( Scalar ‘ 𝑓 ) ∈ DivRing |
| 8 | 7 1 2 | crab | ⊢ { 𝑓 ∈ LMod ∣ ( Scalar ‘ 𝑓 ) ∈ DivRing } |
| 9 | 0 8 | wceq | ⊢ LVec = { 𝑓 ∈ LMod ∣ ( Scalar ‘ 𝑓 ) ∈ DivRing } |