This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lvec | |- LVec = { f e. LMod | ( Scalar ` f ) e. DivRing } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clvec | |- LVec |
|
| 1 | vf | |- f |
|
| 2 | clmod | |- LMod |
|
| 3 | csca | |- Scalar |
|
| 4 | 1 | cv | |- f |
| 5 | 4 3 | cfv | |- ( Scalar ` f ) |
| 6 | cdr | |- DivRing |
|
| 7 | 5 6 | wcel | |- ( Scalar ` f ) e. DivRing |
| 8 | 7 1 2 | crab | |- { f e. LMod | ( Scalar ` f ) e. DivRing } |
| 9 | 0 8 | wceq | |- LVec = { f e. LMod | ( Scalar ` f ) e. DivRing } |