This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e., the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lno | |- LnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) | A. x e. CC A. y e. ( BaseSet ` u ) A. z e. ( BaseSet ` u ) ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) = ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clno | |- LnOp |
|
| 1 | vu | |- u |
|
| 2 | cnv | |- NrmCVec |
|
| 3 | vw | |- w |
|
| 4 | vt | |- t |
|
| 5 | cba | |- BaseSet |
|
| 6 | 3 | cv | |- w |
| 7 | 6 5 | cfv | |- ( BaseSet ` w ) |
| 8 | cmap | |- ^m |
|
| 9 | 1 | cv | |- u |
| 10 | 9 5 | cfv | |- ( BaseSet ` u ) |
| 11 | 7 10 8 | co | |- ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) |
| 12 | vx | |- x |
|
| 13 | cc | |- CC |
|
| 14 | vy | |- y |
|
| 15 | vz | |- z |
|
| 16 | 4 | cv | |- t |
| 17 | 12 | cv | |- x |
| 18 | cns | |- .sOLD |
|
| 19 | 9 18 | cfv | |- ( .sOLD ` u ) |
| 20 | 14 | cv | |- y |
| 21 | 17 20 19 | co | |- ( x ( .sOLD ` u ) y ) |
| 22 | cpv | |- +v |
|
| 23 | 9 22 | cfv | |- ( +v ` u ) |
| 24 | 15 | cv | |- z |
| 25 | 21 24 23 | co | |- ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) |
| 26 | 25 16 | cfv | |- ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) |
| 27 | 6 18 | cfv | |- ( .sOLD ` w ) |
| 28 | 20 16 | cfv | |- ( t ` y ) |
| 29 | 17 28 27 | co | |- ( x ( .sOLD ` w ) ( t ` y ) ) |
| 30 | 6 22 | cfv | |- ( +v ` w ) |
| 31 | 24 16 | cfv | |- ( t ` z ) |
| 32 | 29 31 30 | co | |- ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) |
| 33 | 26 32 | wceq | |- ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) = ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) |
| 34 | 33 15 10 | wral | |- A. z e. ( BaseSet ` u ) ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) = ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) |
| 35 | 34 14 10 | wral | |- A. y e. ( BaseSet ` u ) A. z e. ( BaseSet ` u ) ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) = ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) |
| 36 | 35 12 13 | wral | |- A. x e. CC A. y e. ( BaseSet ` u ) A. z e. ( BaseSet ` u ) ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) = ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) |
| 37 | 36 4 11 | crab | |- { t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) | A. x e. CC A. y e. ( BaseSet ` u ) A. z e. ( BaseSet ` u ) ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) = ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) } |
| 38 | 1 3 2 2 37 | cmpo | |- ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) | A. x e. CC A. y e. ( BaseSet ` u ) A. z e. ( BaseSet ` u ) ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) = ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) } ) |
| 39 | 0 38 | wceq | |- LnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) | A. x e. CC A. y e. ( BaseSet ` u ) A. z e. ( BaseSet ` u ) ( t ` ( ( x ( .sOLD ` u ) y ) ( +v ` u ) z ) ) = ( ( x ( .sOLD ` w ) ( t ` y ) ) ( +v ` w ) ( t ` z ) ) } ) |