This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Homomorphisms and isomorphisms of left modules
df-lmim
Metamath Proof Explorer
Description: An isomorphism of modules is a homomorphism which is also a bijection,
i.e. it preserves equality as well as the group and scalar operations.
(Contributed by Stefan O'Rear , 21-Jan-2015)
Ref
Expression
Assertion
df-lmim
⊢ LMIso = s ∈ LMod , t ∈ LMod ⟼ g ∈ s LMHom t | g : Base s ⟶ 1-1 onto Base t
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
clmim
class LMIso
1
vs
setvar s
2
clmod
class LMod
3
vt
setvar t
4
vg
setvar g
5
1
cv
setvar s
6
clmhm
class LMHom
7
3
cv
setvar t
8
5 7 6
co
class s LMHom t
9
4
cv
setvar g
10
cbs
class Base
11
5 10
cfv
class Base s
12
7 10
cfv
class Base t
13
11 12 9
wf1o
wff g : Base s ⟶ 1-1 onto Base t
14
13 4 8
crab
class g ∈ s LMHom t | g : Base s ⟶ 1-1 onto Base t
15
1 3 2 2 14
cmpo
class s ∈ LMod , t ∈ LMod ⟼ g ∈ s LMHom t | g : Base s ⟶ 1-1 onto Base t
16
0 15
wceq
wff LMIso = s ∈ LMod , t ∈ LMod ⟼ g ∈ s LMHom t | g : Base s ⟶ 1-1 onto Base t