This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the intersection of a class. Definition 7.35 of TakeutiZaring p. 44. For example, |^| { { 1 , 3 } , { 1 , 8 } } = { 1 } . Compare this with the intersection of two classes, df-in . (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-int | |- |^| A = { x | A. y ( y e. A -> x e. y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | 0 | cint | |- |^| A |
| 2 | vx | |- x |
|
| 3 | vy | |- y |
|
| 4 | 3 | cv | |- y |
| 5 | 4 0 | wcel | |- y e. A |
| 6 | 2 | cv | |- x |
| 7 | 6 4 | wcel | |- x e. y |
| 8 | 5 7 | wi | |- ( y e. A -> x e. y ) |
| 9 | 8 3 | wal | |- A. y ( y e. A -> x e. y ) |
| 10 | 9 2 | cab | |- { x | A. y ( y e. A -> x e. y ) } |
| 11 | 1 10 | wceq | |- |^| A = { x | A. y ( y e. A -> x e. y ) } |