This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the sum of two Hilbert space functionals. Definition of Beran p. 111. Note that unlike some authors, we define a functional as any function from ~H to CC , not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hfsum | ⊢ +fn = ( 𝑓 ∈ ( ℂ ↑m ℋ ) , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chfs | ⊢ +fn | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cc | ⊢ ℂ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | chba | ⊢ ℋ | |
| 5 | 2 4 3 | co | ⊢ ( ℂ ↑m ℋ ) |
| 6 | vg | ⊢ 𝑔 | |
| 7 | vx | ⊢ 𝑥 | |
| 8 | 1 | cv | ⊢ 𝑓 |
| 9 | 7 | cv | ⊢ 𝑥 |
| 10 | 9 8 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 11 | caddc | ⊢ + | |
| 12 | 6 | cv | ⊢ 𝑔 |
| 13 | 9 12 | cfv | ⊢ ( 𝑔 ‘ 𝑥 ) |
| 14 | 10 13 11 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) |
| 15 | 7 4 14 | cmpt | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) |
| 16 | 1 6 5 5 15 | cmpo | ⊢ ( 𝑓 ∈ ( ℂ ↑m ℋ ) , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 17 | 0 16 | wceq | ⊢ +fn = ( 𝑓 ∈ ( ℂ ↑m ℋ ) , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) ) |