This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Operator sum, difference, and scalar multiplication
df-hfsum
Metamath Proof Explorer
Description: Define the sum of two Hilbert space functionals. Definition of Beran
p. 111. Note that unlike some authors, we define a functional as any
function from ~H to CC , not just linear (or bounded linear)
ones. (Contributed by NM , 23-May-2006) (New usage is discouraged.)
Ref
Expression
Assertion
df-hfsum
⊢ + fn = f ∈ ℂ ℋ , g ∈ ℂ ℋ ⟼ x ∈ ℋ ⟼ f ⁡ x + g ⁡ x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
chfs
class + fn
1
vf
setvar f
2
cc
class ℂ
3
cmap
class ↑ 𝑚
4
chba
class ℋ
5
2 4 3
co
class ℂ ℋ
6
vg
setvar g
7
vx
setvar x
8
1
cv
setvar f
9
7
cv
setvar x
10
9 8
cfv
class f ⁡ x
11
caddc
class +
12
6
cv
setvar g
13
9 12
cfv
class g ⁡ x
14
10 13 11
co
class f ⁡ x + g ⁡ x
15
7 4 14
cmpt
class x ∈ ℋ ⟼ f ⁡ x + g ⁡ x
16
1 6 5 5 15
cmpo
class f ∈ ℂ ℋ , g ∈ ℂ ℋ ⟼ x ∈ ℋ ⟼ f ⁡ x + g ⁡ x
17
0 16
wceq
wff + fn = f ∈ ℂ ℋ , g ∈ ℂ ℋ ⟼ x ∈ ℋ ⟼ f ⁡ x + g ⁡ x