This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all Hausdorff (or T_2) spaces. A Hausdorff space is a topology in which distinct points have disjoint open neighborhoods. Definition of Hausdorff space in Munkres p. 98. (Contributed by NM, 8-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-haus | ⊢ Haus = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∀ 𝑦 ∈ ∪ 𝑗 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cha | ⊢ Haus | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | 4 | cuni | ⊢ ∪ 𝑗 |
| 6 | vy | ⊢ 𝑦 | |
| 7 | 3 | cv | ⊢ 𝑥 |
| 8 | 6 | cv | ⊢ 𝑦 |
| 9 | 7 8 | wne | ⊢ 𝑥 ≠ 𝑦 |
| 10 | vn | ⊢ 𝑛 | |
| 11 | vm | ⊢ 𝑚 | |
| 12 | 10 | cv | ⊢ 𝑛 |
| 13 | 7 12 | wcel | ⊢ 𝑥 ∈ 𝑛 |
| 14 | 11 | cv | ⊢ 𝑚 |
| 15 | 8 14 | wcel | ⊢ 𝑦 ∈ 𝑚 |
| 16 | 12 14 | cin | ⊢ ( 𝑛 ∩ 𝑚 ) |
| 17 | c0 | ⊢ ∅ | |
| 18 | 16 17 | wceq | ⊢ ( 𝑛 ∩ 𝑚 ) = ∅ |
| 19 | 13 15 18 | w3a | ⊢ ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) |
| 20 | 19 11 4 | wrex | ⊢ ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) |
| 21 | 20 10 4 | wrex | ⊢ ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) |
| 22 | 9 21 | wi | ⊢ ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 23 | 22 6 5 | wral | ⊢ ∀ 𝑦 ∈ ∪ 𝑗 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 24 | 23 3 5 | wral | ⊢ ∀ 𝑥 ∈ ∪ 𝑗 ∀ 𝑦 ∈ ∪ 𝑗 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 25 | 24 1 2 | crab | ⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∀ 𝑦 ∈ ∪ 𝑗 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) } |
| 26 | 0 25 | wceq | ⊢ Haus = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∀ 𝑦 ∈ ∪ 𝑗 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) } |