This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all group operations. The base set for a group can be determined from its group operation. Based on the definition in Exercise 28 of Herstein p. 54. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-grpo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgr | ||
| 1 | vg | ||
| 2 | vt | ||
| 3 | 1 | cv | |
| 4 | 2 | cv | |
| 5 | 4 4 | cxp | |
| 6 | 5 4 3 | wf | |
| 7 | vx | ||
| 8 | vy | ||
| 9 | vz | ||
| 10 | 7 | cv | |
| 11 | 8 | cv | |
| 12 | 10 11 3 | co | |
| 13 | 9 | cv | |
| 14 | 12 13 3 | co | |
| 15 | 11 13 3 | co | |
| 16 | 10 15 3 | co | |
| 17 | 14 16 | wceq | |
| 18 | 17 9 4 | wral | |
| 19 | 18 8 4 | wral | |
| 20 | 19 7 4 | wral | |
| 21 | vu | ||
| 22 | 21 | cv | |
| 23 | 22 10 3 | co | |
| 24 | 23 10 | wceq | |
| 25 | 11 10 3 | co | |
| 26 | 25 22 | wceq | |
| 27 | 26 8 4 | wrex | |
| 28 | 24 27 | wa | |
| 29 | 28 7 4 | wral | |
| 30 | 29 21 4 | wrex | |
| 31 | 6 20 30 | w3a | |
| 32 | 31 2 | wex | |
| 33 | 32 1 | cab | |
| 34 | 0 33 | wceq |