This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Godel-set of equality. Here the arguments x = <. N , P >. correspond to v_N and v_P , so ( (/) =g 1o ) actually means v_0 = v_1 , not 0 = 1 . Here we use the trick mentioned in ax-ext to introduce equality as a defined notion in terms of e.g . The expression suc ( u u. v ) = max ( u , v ) + 1 here is a convenient way of getting a dummy variable distinct from u and v . (Contributed by Mario Carneiro, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-goeq | ⊢ =𝑔 = ( 𝑢 ∈ ω , 𝑣 ∈ ω ↦ ⦋ suc ( 𝑢 ∪ 𝑣 ) / 𝑤 ⦌ ∀𝑔 𝑤 ( ( 𝑤 ∈𝑔 𝑢 ) ↔𝑔 ( 𝑤 ∈𝑔 𝑣 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgoq | ⊢ =𝑔 | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | com | ⊢ ω | |
| 3 | vv | ⊢ 𝑣 | |
| 4 | 1 | cv | ⊢ 𝑢 |
| 5 | 3 | cv | ⊢ 𝑣 |
| 6 | 4 5 | cun | ⊢ ( 𝑢 ∪ 𝑣 ) |
| 7 | 6 | csuc | ⊢ suc ( 𝑢 ∪ 𝑣 ) |
| 8 | vw | ⊢ 𝑤 | |
| 9 | 8 | cv | ⊢ 𝑤 |
| 10 | cgoe | ⊢ ∈𝑔 | |
| 11 | 9 4 10 | co | ⊢ ( 𝑤 ∈𝑔 𝑢 ) |
| 12 | cgob | ⊢ ↔𝑔 | |
| 13 | 9 5 10 | co | ⊢ ( 𝑤 ∈𝑔 𝑣 ) |
| 14 | 11 13 12 | co | ⊢ ( ( 𝑤 ∈𝑔 𝑢 ) ↔𝑔 ( 𝑤 ∈𝑔 𝑣 ) ) |
| 15 | 14 9 | cgol | ⊢ ∀𝑔 𝑤 ( ( 𝑤 ∈𝑔 𝑢 ) ↔𝑔 ( 𝑤 ∈𝑔 𝑣 ) ) |
| 16 | 8 7 15 | csb | ⊢ ⦋ suc ( 𝑢 ∪ 𝑣 ) / 𝑤 ⦌ ∀𝑔 𝑤 ( ( 𝑤 ∈𝑔 𝑢 ) ↔𝑔 ( 𝑤 ∈𝑔 𝑣 ) ) |
| 17 | 1 3 2 2 16 | cmpo | ⊢ ( 𝑢 ∈ ω , 𝑣 ∈ ω ↦ ⦋ suc ( 𝑢 ∪ 𝑣 ) / 𝑤 ⦌ ∀𝑔 𝑤 ( ( 𝑤 ∈𝑔 𝑢 ) ↔𝑔 ( 𝑤 ∈𝑔 𝑣 ) ) ) |
| 18 | 0 17 | wceq | ⊢ =𝑔 = ( 𝑢 ∈ ω , 𝑣 ∈ ω ↦ ⦋ suc ( 𝑢 ∪ 𝑣 ) / 𝑤 ⦌ ∀𝑔 𝑤 ( ( 𝑤 ∈𝑔 𝑢 ) ↔𝑔 ( 𝑤 ∈𝑔 𝑣 ) ) ) |