This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Godel-set of equality. Here the arguments x = <. N , P >. correspond to v_N and v_P , so ( (/) =g 1o ) actually means v_0 = v_1 , not 0 = 1 . Here we use the trick mentioned in ax-ext to introduce equality as a defined notion in terms of e.g . The expression suc ( u u. v ) = max ( u , v ) + 1 here is a convenient way of getting a dummy variable distinct from u and v . (Contributed by Mario Carneiro, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-goeq | |- =g = ( u e. _om , v e. _om |-> [_ suc ( u u. v ) / w ]_ A.g w ( ( w e.g u ) <->g ( w e.g v ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgoq | |- =g |
|
| 1 | vu | |- u |
|
| 2 | com | |- _om |
|
| 3 | vv | |- v |
|
| 4 | 1 | cv | |- u |
| 5 | 3 | cv | |- v |
| 6 | 4 5 | cun | |- ( u u. v ) |
| 7 | 6 | csuc | |- suc ( u u. v ) |
| 8 | vw | |- w |
|
| 9 | 8 | cv | |- w |
| 10 | cgoe | |- e.g |
|
| 11 | 9 4 10 | co | |- ( w e.g u ) |
| 12 | cgob | |- <->g |
|
| 13 | 9 5 10 | co | |- ( w e.g v ) |
| 14 | 11 13 12 | co | |- ( ( w e.g u ) <->g ( w e.g v ) ) |
| 15 | 14 9 | cgol | |- A.g w ( ( w e.g u ) <->g ( w e.g v ) ) |
| 16 | 8 7 15 | csb | |- [_ suc ( u u. v ) / w ]_ A.g w ( ( w e.g u ) <->g ( w e.g v ) ) |
| 17 | 1 3 2 2 16 | cmpo | |- ( u e. _om , v e. _om |-> [_ suc ( u u. v ) / w ]_ A.g w ( ( w e.g u ) <->g ( w e.g v ) ) ) |
| 18 | 0 17 | wceq | |- =g = ( u e. _om , v e. _om |-> [_ suc ( u u. v ) / w ]_ A.g w ( ( w e.g u ) <->g ( w e.g v ) ) ) |