This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Godel-set of equivalence. Here the arguments U and V are also Godel-sets corresponding to smaller formulas. Note that this is aclass expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-gobi | ⊢ ↔𝑔 = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( 𝑢 →𝑔 𝑣 ) ∧𝑔 ( 𝑣 →𝑔 𝑢 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgob | ⊢ ↔𝑔 | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cvv | ⊢ V | |
| 3 | vv | ⊢ 𝑣 | |
| 4 | 1 | cv | ⊢ 𝑢 |
| 5 | cgoi | ⊢ →𝑔 | |
| 6 | 3 | cv | ⊢ 𝑣 |
| 7 | 4 6 5 | co | ⊢ ( 𝑢 →𝑔 𝑣 ) |
| 8 | cgoa | ⊢ ∧𝑔 | |
| 9 | 6 4 5 | co | ⊢ ( 𝑣 →𝑔 𝑢 ) |
| 10 | 7 9 8 | co | ⊢ ( ( 𝑢 →𝑔 𝑣 ) ∧𝑔 ( 𝑣 →𝑔 𝑢 ) ) |
| 11 | 1 3 2 2 10 | cmpo | ⊢ ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( 𝑢 →𝑔 𝑣 ) ∧𝑔 ( 𝑣 →𝑔 𝑢 ) ) ) |
| 12 | 0 11 | wceq | ⊢ ↔𝑔 = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( 𝑢 →𝑔 𝑣 ) ∧𝑔 ( 𝑣 →𝑔 𝑢 ) ) ) |