This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ghm | ⊢ GrpHom = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cghm | ⊢ GrpHom | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cgrp | ⊢ Grp | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | vg | ⊢ 𝑔 | |
| 5 | cbs | ⊢ Base | |
| 6 | 1 | cv | ⊢ 𝑠 |
| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 8 | vw | ⊢ 𝑤 | |
| 9 | 4 | cv | ⊢ 𝑔 |
| 10 | 8 | cv | ⊢ 𝑤 |
| 11 | 3 | cv | ⊢ 𝑡 |
| 12 | 11 5 | cfv | ⊢ ( Base ‘ 𝑡 ) |
| 13 | 10 12 9 | wf | ⊢ 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) |
| 14 | vx | ⊢ 𝑥 | |
| 15 | vy | ⊢ 𝑦 | |
| 16 | 14 | cv | ⊢ 𝑥 |
| 17 | cplusg | ⊢ +g | |
| 18 | 6 17 | cfv | ⊢ ( +g ‘ 𝑠 ) |
| 19 | 15 | cv | ⊢ 𝑦 |
| 20 | 16 19 18 | co | ⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
| 21 | 20 9 | cfv | ⊢ ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) |
| 22 | 16 9 | cfv | ⊢ ( 𝑔 ‘ 𝑥 ) |
| 23 | 11 17 | cfv | ⊢ ( +g ‘ 𝑡 ) |
| 24 | 19 9 | cfv | ⊢ ( 𝑔 ‘ 𝑦 ) |
| 25 | 22 24 23 | co | ⊢ ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) |
| 26 | 21 25 | wceq | ⊢ ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) |
| 27 | 26 15 10 | wral | ⊢ ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) |
| 28 | 27 14 10 | wral | ⊢ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) |
| 29 | 13 28 | wa | ⊢ ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) |
| 30 | 29 8 7 | wsbc | ⊢ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) |
| 31 | 30 4 | cab | ⊢ { 𝑔 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) } |
| 32 | 1 3 2 2 31 | cmpo | ⊢ ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) } ) |
| 33 | 0 32 | wceq | ⊢ GrpHom = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) } ) |