This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning all the full functors from a category C to a category D . A full functor is a functor in which all the morphism maps G ( X , Y ) between objects X , Y e. C are surjections. Definition 3.27(3) in Adamek p. 34. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-full | ⊢ Full = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cful | ⊢ Full | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vd | ⊢ 𝑑 | |
| 4 | vf | ⊢ 𝑓 | |
| 5 | vg | ⊢ 𝑔 | |
| 6 | 4 | cv | ⊢ 𝑓 |
| 7 | 1 | cv | ⊢ 𝑐 |
| 8 | cfunc | ⊢ Func | |
| 9 | 3 | cv | ⊢ 𝑑 |
| 10 | 7 9 8 | co | ⊢ ( 𝑐 Func 𝑑 ) |
| 11 | 5 | cv | ⊢ 𝑔 |
| 12 | 6 11 10 | wbr | ⊢ 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 |
| 13 | vx | ⊢ 𝑥 | |
| 14 | cbs | ⊢ Base | |
| 15 | 7 14 | cfv | ⊢ ( Base ‘ 𝑐 ) |
| 16 | vy | ⊢ 𝑦 | |
| 17 | 13 | cv | ⊢ 𝑥 |
| 18 | 16 | cv | ⊢ 𝑦 |
| 19 | 17 18 11 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 20 | 19 | crn | ⊢ ran ( 𝑥 𝑔 𝑦 ) |
| 21 | 17 6 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 22 | chom | ⊢ Hom | |
| 23 | 9 22 | cfv | ⊢ ( Hom ‘ 𝑑 ) |
| 24 | 18 6 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 25 | 21 24 23 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) |
| 26 | 20 25 | wceq | ⊢ ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) |
| 27 | 26 16 15 | wral | ⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) |
| 28 | 27 13 15 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) |
| 29 | 12 28 | wa | ⊢ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 30 | 29 4 5 | copab | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 31 | 1 3 2 2 30 | cmpo | ⊢ ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 32 | 0 31 | wceq | ⊢ Full = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |