This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is II-finite (Tarski finite) iff every nonempty chain of subsets contains a maximum element. Definition II of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fin2 | ⊢ FinII = { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfin2 | ⊢ FinII | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | 3 | cpw | ⊢ 𝒫 𝑥 |
| 5 | 4 | cpw | ⊢ 𝒫 𝒫 𝑥 |
| 6 | 2 | cv | ⊢ 𝑦 |
| 7 | c0 | ⊢ ∅ | |
| 8 | 6 7 | wne | ⊢ 𝑦 ≠ ∅ |
| 9 | crpss | ⊢ [⊊] | |
| 10 | 6 9 | wor | ⊢ [⊊] Or 𝑦 |
| 11 | 8 10 | wa | ⊢ ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) |
| 12 | 6 | cuni | ⊢ ∪ 𝑦 |
| 13 | 12 6 | wcel | ⊢ ∪ 𝑦 ∈ 𝑦 |
| 14 | 11 13 | wi | ⊢ ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) |
| 15 | 14 2 5 | wral | ⊢ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) |
| 16 | 15 1 | cab | ⊢ { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) } |
| 17 | 0 16 | wceq | ⊢ FinII = { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) } |