This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
df-fin2
Metamath Proof Explorer
Description: A set is II-finite (Tarski finite) iff every nonempty chain of subsets
contains a maximum element. Definition II of Levy58 p. 2.
(Contributed by Stefan O'Rear , 12-Nov-2014)
Ref
Expression
Assertion
df-fin2
⊢ Fin II = x | ∀ y ∈ 𝒫 𝒫 x y ≠ ∅ ∧ [⊂] Or y → ⋃ y ∈ y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cfin2
class Fin II
1
vx
setvar x
2
vy
setvar y
3
1
cv
setvar x
4
3
cpw
class 𝒫 x
5
4
cpw
class 𝒫 𝒫 x
6
2
cv
setvar y
7
c0
class ∅
8
6 7
wne
wff y ≠ ∅
9
crpss
class [⊂]
10
6 9
wor
wff [⊂] Or y
11
8 10
wa
wff y ≠ ∅ ∧ [⊂] Or y
12
6
cuni
class ⋃ y
13
12 6
wcel
wff ⋃ y ∈ y
14
11 13
wi
wff y ≠ ∅ ∧ [⊂] Or y → ⋃ y ∈ y
15
14 2 5
wral
wff ∀ y ∈ 𝒫 𝒫 x y ≠ ∅ ∧ [⊂] Or y → ⋃ y ∈ y
16
15 1
cab
class x | ∀ y ∈ 𝒫 𝒫 x y ≠ ∅ ∧ [⊂] Or y → ⋃ y ∈ y
17
0 16
wceq
wff Fin II = x | ∀ y ∈ 𝒫 𝒫 x y ≠ ∅ ∧ [⊂] Or y → ⋃ y ∈ y