This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct sum of a family of Abelian groups or left modules is the induced group structure on finite linear combinations of elements, here represented as functions with finite support. (Contributed by Stefan O'Rear, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dsmm | ⊢ ⊕m = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdsmm | ⊢ ⊕m | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cvv | ⊢ V | |
| 3 | vr | ⊢ 𝑟 | |
| 4 | 1 | cv | ⊢ 𝑠 |
| 5 | cprds | ⊢ Xs | |
| 6 | 3 | cv | ⊢ 𝑟 |
| 7 | 4 6 5 | co | ⊢ ( 𝑠 Xs 𝑟 ) |
| 8 | cress | ⊢ ↾s | |
| 9 | vf | ⊢ 𝑓 | |
| 10 | vx | ⊢ 𝑥 | |
| 11 | 6 | cdm | ⊢ dom 𝑟 |
| 12 | cbs | ⊢ Base | |
| 13 | 10 | cv | ⊢ 𝑥 |
| 14 | 13 6 | cfv | ⊢ ( 𝑟 ‘ 𝑥 ) |
| 15 | 14 12 | cfv | ⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 16 | 10 11 15 | cixp | ⊢ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 17 | 9 | cv | ⊢ 𝑓 |
| 18 | 13 17 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 19 | c0g | ⊢ 0g | |
| 20 | 14 19 | cfv | ⊢ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 21 | 18 20 | wne | ⊢ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 22 | 21 10 11 | crab | ⊢ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } |
| 23 | cfn | ⊢ Fin | |
| 24 | 22 23 | wcel | ⊢ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin |
| 25 | 24 9 16 | crab | ⊢ { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } |
| 26 | 7 25 8 | co | ⊢ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) |
| 27 | 1 3 2 2 26 | cmpo | ⊢ ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) ) |
| 28 | 0 27 | wceq | ⊢ ⊕m = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) ) |