This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cmn | |- CMnd = { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccmn | |- CMnd |
|
| 1 | vg | |- g |
|
| 2 | cmnd | |- Mnd |
|
| 3 | va | |- a |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- g |
| 6 | 5 4 | cfv | |- ( Base ` g ) |
| 7 | vb | |- b |
|
| 8 | 3 | cv | |- a |
| 9 | cplusg | |- +g |
|
| 10 | 5 9 | cfv | |- ( +g ` g ) |
| 11 | 7 | cv | |- b |
| 12 | 8 11 10 | co | |- ( a ( +g ` g ) b ) |
| 13 | 11 8 10 | co | |- ( b ( +g ` g ) a ) |
| 14 | 12 13 | wceq | |- ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) |
| 15 | 14 7 6 | wral | |- A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) |
| 16 | 15 3 6 | wral | |- A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) |
| 17 | 16 1 2 | crab | |- { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) } |
| 18 | 0 17 | wceq | |- CMnd = { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) } |