This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the function giving: the transitive closure of X in A by R . This definition has been designed for facilitating verification that it is eliminable and that the $d restrictions are sound and complete. For a more readable definition see bnj882 . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bnj18 | ⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cX | ⊢ 𝑋 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | cR | ⊢ 𝑅 | |
| 3 | 1 2 0 | c-bnj18 | ⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) |
| 4 | vf | ⊢ 𝑓 | |
| 5 | vn | ⊢ 𝑛 | |
| 6 | com | ⊢ ω | |
| 7 | c0 | ⊢ ∅ | |
| 8 | 7 | csn | ⊢ { ∅ } |
| 9 | 6 8 | cdif | ⊢ ( ω ∖ { ∅ } ) |
| 10 | 4 | cv | ⊢ 𝑓 |
| 11 | 5 | cv | ⊢ 𝑛 |
| 12 | 10 11 | wfn | ⊢ 𝑓 Fn 𝑛 |
| 13 | 7 10 | cfv | ⊢ ( 𝑓 ‘ ∅ ) |
| 14 | 1 2 0 | c-bnj14 | ⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) |
| 15 | 13 14 | wceq | ⊢ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) |
| 16 | vi | ⊢ 𝑖 | |
| 17 | 16 | cv | ⊢ 𝑖 |
| 18 | 17 | csuc | ⊢ suc 𝑖 |
| 19 | 18 11 | wcel | ⊢ suc 𝑖 ∈ 𝑛 |
| 20 | 18 10 | cfv | ⊢ ( 𝑓 ‘ suc 𝑖 ) |
| 21 | vy | ⊢ 𝑦 | |
| 22 | 17 10 | cfv | ⊢ ( 𝑓 ‘ 𝑖 ) |
| 23 | 21 | cv | ⊢ 𝑦 |
| 24 | 1 2 23 | c-bnj14 | ⊢ pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 25 | 21 22 24 | ciun | ⊢ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 26 | 20 25 | wceq | ⊢ ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 27 | 19 26 | wi | ⊢ ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 28 | 27 16 6 | wral | ⊢ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 29 | 12 15 28 | w3a | ⊢ ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 30 | 29 5 9 | wrex | ⊢ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 31 | 30 4 | cab | ⊢ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } |
| 32 | 10 | cdm | ⊢ dom 𝑓 |
| 33 | 16 32 22 | ciun | ⊢ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
| 34 | 4 31 33 | ciun | ⊢ ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
| 35 | 3 34 | wceq | ⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |