This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the function giving: the transitive closure of X in A by R . This definition has been designed for facilitating verification that it is eliminable and that the $d restrictions are sound and complete. For a more readable definition see bnj882 . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bnj18 | |- _trCl ( X , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cX | |- X |
|
| 1 | cA | |- A |
|
| 2 | cR | |- R |
|
| 3 | 1 2 0 | c-bnj18 | |- _trCl ( X , A , R ) |
| 4 | vf | |- f |
|
| 5 | vn | |- n |
|
| 6 | com | |- _om |
|
| 7 | c0 | |- (/) |
|
| 8 | 7 | csn | |- { (/) } |
| 9 | 6 8 | cdif | |- ( _om \ { (/) } ) |
| 10 | 4 | cv | |- f |
| 11 | 5 | cv | |- n |
| 12 | 10 11 | wfn | |- f Fn n |
| 13 | 7 10 | cfv | |- ( f ` (/) ) |
| 14 | 1 2 0 | c-bnj14 | |- _pred ( X , A , R ) |
| 15 | 13 14 | wceq | |- ( f ` (/) ) = _pred ( X , A , R ) |
| 16 | vi | |- i |
|
| 17 | 16 | cv | |- i |
| 18 | 17 | csuc | |- suc i |
| 19 | 18 11 | wcel | |- suc i e. n |
| 20 | 18 10 | cfv | |- ( f ` suc i ) |
| 21 | vy | |- y |
|
| 22 | 17 10 | cfv | |- ( f ` i ) |
| 23 | 21 | cv | |- y |
| 24 | 1 2 23 | c-bnj14 | |- _pred ( y , A , R ) |
| 25 | 21 22 24 | ciun | |- U_ y e. ( f ` i ) _pred ( y , A , R ) |
| 26 | 20 25 | wceq | |- ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) |
| 27 | 19 26 | wi | |- ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
| 28 | 27 16 6 | wral | |- A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
| 29 | 12 15 28 | w3a | |- ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 30 | 29 5 9 | wrex | |- E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 31 | 30 4 | cab | |- { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } |
| 32 | 10 | cdm | |- dom f |
| 33 | 16 32 22 | ciun | |- U_ i e. dom f ( f ` i ) |
| 34 | 4 31 33 | ciun | |- U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
| 35 | 3 34 | wceq | |- _trCl ( X , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |