This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A device to add associativity to various sorts of internal operations. The definition is meaningful when g is a magma at least. (Contributed by FL, 1-Nov-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ass | ⊢ Ass = { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cass | ⊢ Ass | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | vx | ⊢ 𝑥 | |
| 3 | 1 | cv | ⊢ 𝑔 |
| 4 | 3 | cdm | ⊢ dom 𝑔 |
| 5 | 4 | cdm | ⊢ dom dom 𝑔 |
| 6 | vy | ⊢ 𝑦 | |
| 7 | vz | ⊢ 𝑧 | |
| 8 | 2 | cv | ⊢ 𝑥 |
| 9 | 6 | cv | ⊢ 𝑦 |
| 10 | 8 9 3 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 11 | 7 | cv | ⊢ 𝑧 |
| 12 | 10 11 3 | co | ⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) |
| 13 | 9 11 3 | co | ⊢ ( 𝑦 𝑔 𝑧 ) |
| 14 | 8 13 3 | co | ⊢ ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 15 | 12 14 | wceq | ⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 16 | 15 7 5 | wral | ⊢ ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 17 | 16 6 5 | wral | ⊢ ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 18 | 17 2 5 | wral | ⊢ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 19 | 18 1 | cab | ⊢ { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } |
| 20 | 0 19 | wceq | ⊢ Ass = { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } |