This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A device to add associativity to various sorts of internal operations. The definition is meaningful when g is a magma at least. (Contributed by FL, 1-Nov-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ass | |- Ass = { g | A. x e. dom dom g A. y e. dom dom g A. z e. dom dom g ( ( x g y ) g z ) = ( x g ( y g z ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cass | |- Ass |
|
| 1 | vg | |- g |
|
| 2 | vx | |- x |
|
| 3 | 1 | cv | |- g |
| 4 | 3 | cdm | |- dom g |
| 5 | 4 | cdm | |- dom dom g |
| 6 | vy | |- y |
|
| 7 | vz | |- z |
|
| 8 | 2 | cv | |- x |
| 9 | 6 | cv | |- y |
| 10 | 8 9 3 | co | |- ( x g y ) |
| 11 | 7 | cv | |- z |
| 12 | 10 11 3 | co | |- ( ( x g y ) g z ) |
| 13 | 9 11 3 | co | |- ( y g z ) |
| 14 | 8 13 3 | co | |- ( x g ( y g z ) ) |
| 15 | 12 14 | wceq | |- ( ( x g y ) g z ) = ( x g ( y g z ) ) |
| 16 | 15 7 5 | wral | |- A. z e. dom dom g ( ( x g y ) g z ) = ( x g ( y g z ) ) |
| 17 | 16 6 5 | wral | |- A. y e. dom dom g A. z e. dom dom g ( ( x g y ) g z ) = ( x g ( y g z ) ) |
| 18 | 17 2 5 | wral | |- A. x e. dom dom g A. y e. dom dom g A. z e. dom dom g ( ( x g y ) g z ) = ( x g ( y g z ) ) |
| 19 | 18 1 | cab | |- { g | A. x e. dom dom g A. y e. dom dom g A. z e. dom dom g ( ( x g y ) g z ) = ( x g ( y g z ) ) } |
| 20 | 0 19 | wceq | |- Ass = { g | A. x e. dom dom g A. y e. dom dom g A. z e. dom dom g ( ( x g y ) g z ) = ( x g ( y g z ) ) } |