This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the arccosine function. See also remarks for df-asin . Since we define arccos in terms of arcsin , it shares the same branch points and cuts, namely ( -oo , -u 1 ) u. ( 1 , +oo ) . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-acos | ⊢ arccos = ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cacos | ⊢ arccos | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cc | ⊢ ℂ | |
| 3 | cpi | ⊢ π | |
| 4 | cdiv | ⊢ / | |
| 5 | c2 | ⊢ 2 | |
| 6 | 3 5 4 | co | ⊢ ( π / 2 ) |
| 7 | cmin | ⊢ − | |
| 8 | casin | ⊢ arcsin | |
| 9 | 1 | cv | ⊢ 𝑥 |
| 10 | 9 8 | cfv | ⊢ ( arcsin ‘ 𝑥 ) |
| 11 | 6 10 7 | co | ⊢ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) |
| 12 | 1 2 11 | cmpt | ⊢ ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) |
| 13 | 0 12 | wceq | ⊢ arccos = ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) |