This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference between a numeral M and a nonnegative integer N (no underflow). (Contributed by AV, 22-Jul-2021) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decaddi.1 | ⊢ 𝐴 ∈ ℕ0 | |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 | ||
| decaddi.4 | ⊢ 𝑀 = ; 𝐴 𝐵 | ||
| decaddci.5 | ⊢ ( 𝐴 + 1 ) = 𝐷 | ||
| decsubi.5 | ⊢ ( 𝐵 − 𝑁 ) = 𝐶 | ||
| Assertion | decsubi | ⊢ ( 𝑀 − 𝑁 ) = ; 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decaddi.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decaddi.3 | ⊢ 𝑁 ∈ ℕ0 | |
| 4 | decaddi.4 | ⊢ 𝑀 = ; 𝐴 𝐵 | |
| 5 | decaddci.5 | ⊢ ( 𝐴 + 1 ) = 𝐷 | |
| 6 | decsubi.5 | ⊢ ( 𝐵 − 𝑁 ) = 𝐶 | |
| 7 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 8 | 7 1 | nn0mulcli | ⊢ ( ; 1 0 · 𝐴 ) ∈ ℕ0 |
| 9 | 8 | nn0cni | ⊢ ( ; 1 0 · 𝐴 ) ∈ ℂ |
| 10 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 11 | 3 | nn0cni | ⊢ 𝑁 ∈ ℂ |
| 12 | 9 10 11 | addsubassi | ⊢ ( ( ( ; 1 0 · 𝐴 ) + 𝐵 ) − 𝑁 ) = ( ( ; 1 0 · 𝐴 ) + ( 𝐵 − 𝑁 ) ) |
| 13 | dfdec10 | ⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) | |
| 14 | 4 13 | eqtri | ⊢ 𝑀 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 15 | 14 | oveq1i | ⊢ ( 𝑀 − 𝑁 ) = ( ( ( ; 1 0 · 𝐴 ) + 𝐵 ) − 𝑁 ) |
| 16 | dfdec10 | ⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) | |
| 17 | 6 | eqcomi | ⊢ 𝐶 = ( 𝐵 − 𝑁 ) |
| 18 | 17 | oveq2i | ⊢ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) = ( ( ; 1 0 · 𝐴 ) + ( 𝐵 − 𝑁 ) ) |
| 19 | 16 18 | eqtri | ⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + ( 𝐵 − 𝑁 ) ) |
| 20 | 12 15 19 | 3eqtr4i | ⊢ ( 𝑀 − 𝑁 ) = ; 𝐴 𝐶 |