This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| recxpcld.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| recxpcld.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cxple2ad.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| cxple2ad.5 | ⊢ ( 𝜑 → 0 ≤ 𝐶 ) | ||
| cxple2ad.6 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| Assertion | cxple2ad | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | recxpcld.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 3 | recxpcld.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | cxple2ad.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 5 | cxple2ad.5 | ⊢ ( 𝜑 → 0 ≤ 𝐶 ) | |
| 6 | cxple2ad.6 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 7 | cxple2a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) | |
| 8 | 1 3 4 2 5 6 7 | syl321anc | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |