This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cxp0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| cxpefd.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| cxpefd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| cxpaddd.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | cxpaddd | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | cxpefd.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | cxpefd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 4 | cxpaddd.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 5 | cxpadd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) | |
| 6 | 1 2 3 4 5 | syl211anc | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |