This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbov | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 𝐹 𝐶 ) = ( 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbov123 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 𝐹 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 2 | csbconstg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐵 ) | |
| 3 | csbconstg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐶 ) | |
| 4 | 2 3 | oveq12d | ⊢ ( 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝐶 ) ) |
| 5 | 0fv | ⊢ ( ∅ ‘ 〈 𝐵 , 𝐶 〉 ) = ∅ | |
| 6 | df-ov | ⊢ ( 𝐵 ∅ 𝐶 ) = ( ∅ ‘ 〈 𝐵 , 𝐶 〉 ) | |
| 7 | 0ov | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ∅ | |
| 8 | 5 6 7 | 3eqtr4ri | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( 𝐵 ∅ 𝐶 ) |
| 9 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐹 = ∅ ) | |
| 10 | 9 | oveqd | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 11 | 9 | oveqd | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝐶 ) = ( 𝐵 ∅ 𝐶 ) ) |
| 12 | 8 10 11 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝐶 ) ) |
| 13 | 4 12 | pm2.61i | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝐶 ) |
| 14 | 1 13 | eqtri | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 𝐹 𝐶 ) = ( 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝐶 ) |