This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker csbnestgfw when possible. (Contributed by NM, 23-Nov-2005) (Proof shortened by Mario Carneiro, 10-Nov-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbnestgf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | df-csb | ⊢ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = { 𝑧 ∣ [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 } | |
| 3 | 2 | eqabri | ⊢ ( 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) |
| 4 | 3 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) |
| 5 | nfcr | ⊢ ( Ⅎ 𝑥 𝐶 → Ⅎ 𝑥 𝑧 ∈ 𝐶 ) | |
| 6 | 5 | alimi | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝐶 → ∀ 𝑦 Ⅎ 𝑥 𝑧 ∈ 𝐶 ) |
| 7 | sbcnestgf | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 Ⅎ 𝑥 𝑧 ∈ 𝐶 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) ) |
| 9 | 4 8 | bitrid | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) ) |
| 10 | 9 | abbidv | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 } = { 𝑧 ∣ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 } ) |
| 11 | 1 10 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 } = { 𝑧 ∣ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 } ) |
| 12 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 } | |
| 13 | df-csb | ⊢ ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ 𝐶 = { 𝑧 ∣ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 } | |
| 14 | 11 12 13 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ 𝐶 ) |