This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the conditional operator. (Contributed by NM, 24-Feb-2013) (Revised by NM, 19-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbif | |- [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | |- ( y = A -> [_ y / x ]_ if ( ph , B , C ) = [_ A / x ]_ if ( ph , B , C ) ) |
|
| 2 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
|
| 3 | csbeq1 | |- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
|
| 4 | csbeq1 | |- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
|
| 5 | 2 3 4 | ifbieq12d | |- ( y = A -> if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) |
| 6 | 1 5 | eqeq12d | |- ( y = A -> ( [_ y / x ]_ if ( ph , B , C ) = if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) <-> [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) ) |
| 7 | vex | |- y e. _V |
|
| 8 | nfs1v | |- F/ x [ y / x ] ph |
|
| 9 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 10 | nfcsb1v | |- F/_ x [_ y / x ]_ C |
|
| 11 | 8 9 10 | nfif | |- F/_ x if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) |
| 12 | sbequ12 | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
|
| 13 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 14 | csbeq1a | |- ( x = y -> C = [_ y / x ]_ C ) |
|
| 15 | 12 13 14 | ifbieq12d | |- ( x = y -> if ( ph , B , C ) = if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) ) |
| 16 | 7 11 15 | csbief | |- [_ y / x ]_ if ( ph , B , C ) = if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) |
| 17 | 6 16 | vtoclg | |- ( A e. _V -> [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) |
| 18 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ if ( ph , B , C ) = (/) ) |
|
| 19 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
|
| 20 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
|
| 21 | 19 20 | ifeq12d | |- ( -. A e. _V -> if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) = if ( [. A / x ]. ph , (/) , (/) ) ) |
| 22 | ifid | |- if ( [. A / x ]. ph , (/) , (/) ) = (/) |
|
| 23 | 21 22 | eqtr2di | |- ( -. A e. _V -> (/) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) |
| 24 | 18 23 | eqtrd | |- ( -. A e. _V -> [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) |
| 25 | 17 24 | pm2.61i | |- [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) |