This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine of a number subtracted from 2 x. _pi . (Contributed by Paul Chapman, 15-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos2pim | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( 2 · π ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 2 | 1z | ⊢ 1 ∈ ℤ | |
| 3 | cosper | ⊢ ( ( - 𝐴 ∈ ℂ ∧ 1 ∈ ℤ ) → ( cos ‘ ( - 𝐴 + ( 1 · ( 2 · π ) ) ) ) = ( cos ‘ - 𝐴 ) ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( - 𝐴 + ( 1 · ( 2 · π ) ) ) ) = ( cos ‘ - 𝐴 ) ) |
| 5 | 2cn | ⊢ 2 ∈ ℂ | |
| 6 | picn | ⊢ π ∈ ℂ | |
| 7 | 5 6 | mulcli | ⊢ ( 2 · π ) ∈ ℂ |
| 8 | 7 | mullidi | ⊢ ( 1 · ( 2 · π ) ) = ( 2 · π ) |
| 9 | 8 | oveq2i | ⊢ ( - 𝐴 + ( 1 · ( 2 · π ) ) ) = ( - 𝐴 + ( 2 · π ) ) |
| 10 | negsubdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ) → - ( 𝐴 − ( 2 · π ) ) = ( - 𝐴 + ( 2 · π ) ) ) | |
| 11 | negsubdi2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ) → - ( 𝐴 − ( 2 · π ) ) = ( ( 2 · π ) − 𝐴 ) ) | |
| 12 | 10 11 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ) → ( - 𝐴 + ( 2 · π ) ) = ( ( 2 · π ) − 𝐴 ) ) |
| 13 | 7 12 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 + ( 2 · π ) ) = ( ( 2 · π ) − 𝐴 ) ) |
| 14 | 9 13 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 + ( 1 · ( 2 · π ) ) ) = ( ( 2 · π ) − 𝐴 ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( - 𝐴 + ( 1 · ( 2 · π ) ) ) ) = ( cos ‘ ( ( 2 · π ) − 𝐴 ) ) ) |
| 16 | 4 15 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ ( ( 2 · π ) − 𝐴 ) ) ) |
| 17 | cosneg | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) | |
| 18 | 16 17 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( 2 · π ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |