This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a relation is a subclass. (Contributed by Peter Mazsa, 11-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvref4 | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel6 | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) | |
| 2 | 1 | biimpi | ⊢ ( Rel 𝑅 → ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
| 3 | 2 | dmeqd | ⊢ ( Rel 𝑅 → dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = dom 𝑅 ) |
| 4 | 2 | rneqd | ⊢ ( Rel 𝑅 → ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = ran 𝑅 ) |
| 5 | 3 4 | xpeq12d | ⊢ ( Rel 𝑅 → ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) = ( dom 𝑅 × ran 𝑅 ) ) |
| 6 | 5 | ineq2d | ⊢ ( Rel 𝑅 → ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) = ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) |
| 7 | 6 | sseq2d | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) |
| 8 | relxp | ⊢ Rel ( dom 𝑅 × ran 𝑅 ) | |
| 9 | relin2 | ⊢ ( Rel ( dom 𝑅 × ran 𝑅 ) → Rel ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) | |
| 10 | relssinxpdmrn | ⊢ ( Rel ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑆 ) ) | |
| 11 | 8 9 10 | mp2b | ⊢ ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑆 ) |
| 12 | 2 | sseq1d | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆 ) ) |
| 13 | 11 12 | bitrid | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) ↔ 𝑅 ⊆ 𝑆 ) ) |
| 14 | 7 13 | bitr3d | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ 𝑆 ) ) |