This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a relation is a subclass. (Contributed by Peter Mazsa, 11-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvref4 | |- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel6 | |- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
|
| 2 | 1 | biimpi | |- ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R ) |
| 3 | 2 | dmeqd | |- ( Rel R -> dom ( R i^i ( dom R X. ran R ) ) = dom R ) |
| 4 | 2 | rneqd | |- ( Rel R -> ran ( R i^i ( dom R X. ran R ) ) = ran R ) |
| 5 | 3 4 | xpeq12d | |- ( Rel R -> ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) = ( dom R X. ran R ) ) |
| 6 | 5 | ineq2d | |- ( Rel R -> ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) = ( S i^i ( dom R X. ran R ) ) ) |
| 7 | 6 | sseq2d | |- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) <-> ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom R X. ran R ) ) ) ) |
| 8 | relxp | |- Rel ( dom R X. ran R ) |
|
| 9 | relin2 | |- ( Rel ( dom R X. ran R ) -> Rel ( R i^i ( dom R X. ran R ) ) ) |
|
| 10 | relssinxpdmrn | |- ( Rel ( R i^i ( dom R X. ran R ) ) -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) <-> ( R i^i ( dom R X. ran R ) ) C_ S ) ) |
|
| 11 | 8 9 10 | mp2b | |- ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) <-> ( R i^i ( dom R X. ran R ) ) C_ S ) |
| 12 | 2 | sseq1d | |- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ S <-> R C_ S ) ) |
| 13 | 11 12 | bitrid | |- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) <-> R C_ S ) ) |
| 14 | 7 13 | bitr3d | |- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) ) |