This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate F converges to 0 . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| clim0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| clim0.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| clim0.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| Assertion | clim0 | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | clim0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | clim0.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 4 | clim0.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 5 | 1 2 3 4 | clim2 | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ( 0 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ) ) ) |
| 6 | 0cn | ⊢ 0 ∈ ℂ | |
| 7 | 6 | biantrur | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ( 0 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ) ) |
| 8 | subid1 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 − 0 ) = 𝐵 ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ ( 𝐵 − 0 ) ) = ( abs ‘ 𝐵 ) ) |
| 10 | 9 | breq1d | ⊢ ( 𝐵 ∈ ℂ → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 11 | 10 | pm5.32i | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 12 | 11 | ralbii | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 13 | 12 | rexbii | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 15 | 7 14 | bitr3i | ⊢ ( ( 0 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 16 | 5 15 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |