This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 ). Version of clelsb1f with a disjoint variable condition, which does not require ax-13 . (Contributed by Rodolfo Medina, 28-Apr-2010) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clelsb1fw.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | clelsb1fw | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelsb1fw.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑤 ∈ 𝐴 |
| 3 | 2 | sbco2v | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑤 ] 𝑤 ∈ 𝐴 ↔ [ 𝑦 / 𝑤 ] 𝑤 ∈ 𝐴 ) |
| 4 | clelsb1 | ⊢ ( [ 𝑥 / 𝑤 ] 𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) | |
| 5 | 4 | sbbii | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑤 ] 𝑤 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ) |
| 6 | clelsb1 | ⊢ ( [ 𝑦 / 𝑤 ] 𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) | |
| 7 | 3 5 6 | 3bitr3i | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |